# **RTU** Optimization

Evaporative Condenser Air Pre-Cooling Variable Fan and Compressor Control

> Theresa Pistochini April 14<sup>th</sup>, 2015

Sponsored by Southern California Edison





# **Evaporative Pre-Cooling**

- Evaporate water sensibly cool outdoor air prior to entering condensing unit
- Improve air conditioning cycle efficiency and reduce demand
- Potentially use rainwater capture or greywater as water source (non-potable water)





# Fan and Compressor Speed Control

- Reduce fan speed to decrease capacity at part load conditions (or peak conditions, when pre-cooling is present)
- Reduce compressor speed to control latent cooling (control of humidity)

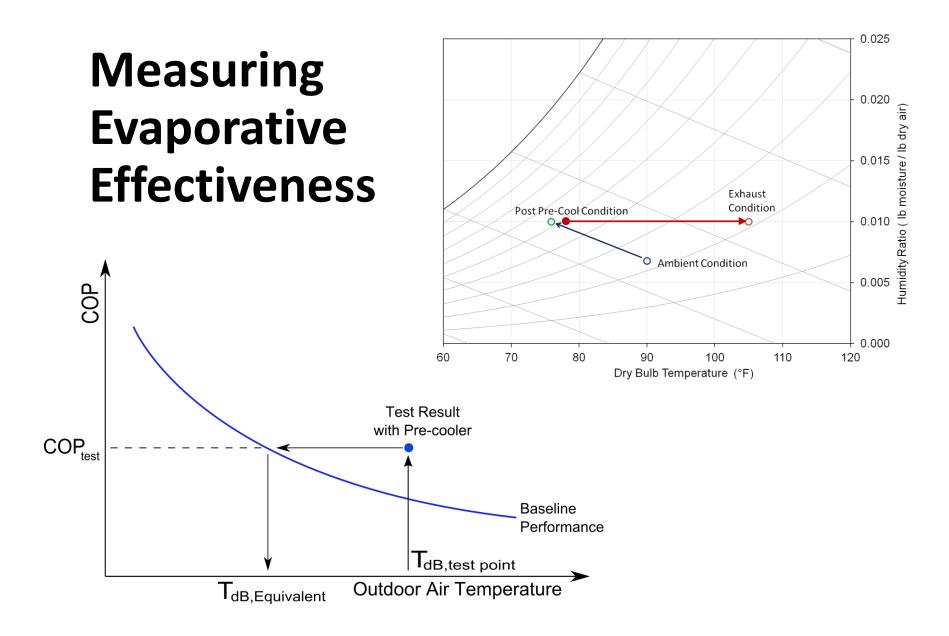




#### **Evaporative Pre-cooler Test Protocol**

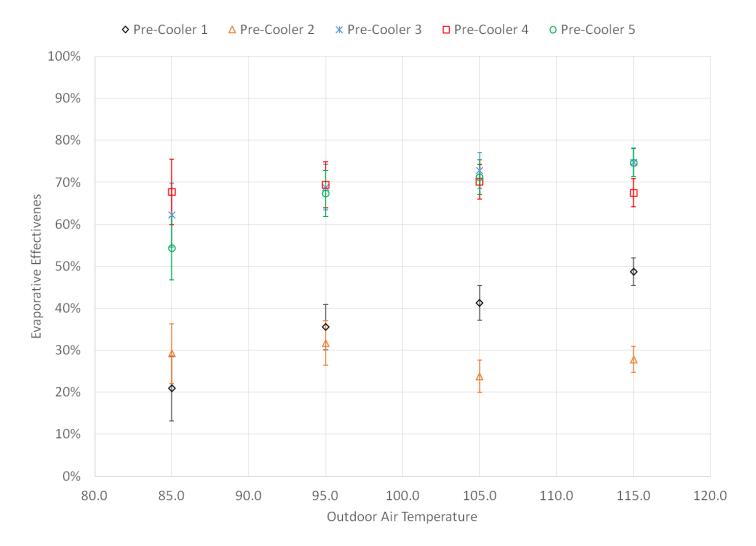
- Laboratory test of evaporative condenser air pre-coolers
- Test protocol development (ASHRAE Standards Project Committee SPC 212P)
- WCEC tested five pre-coolers on 4-ton York RTU
- Results reported to manufacturers





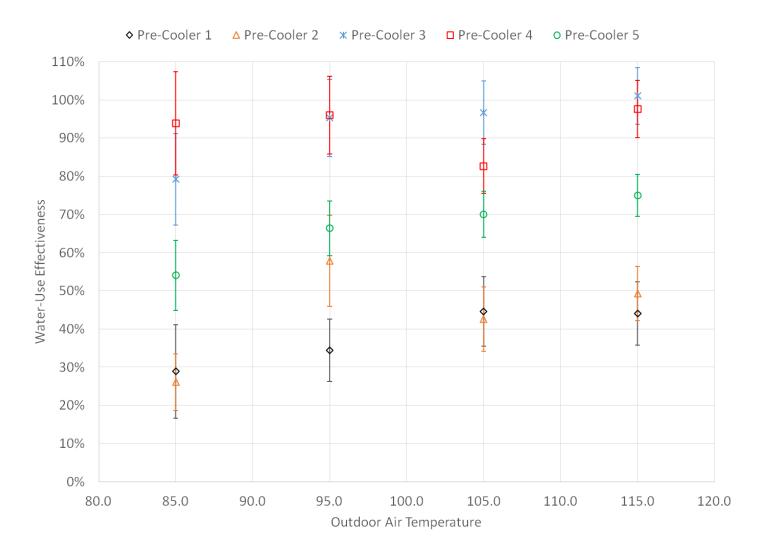






#### Test Unit in WCEC Environmental Chamber











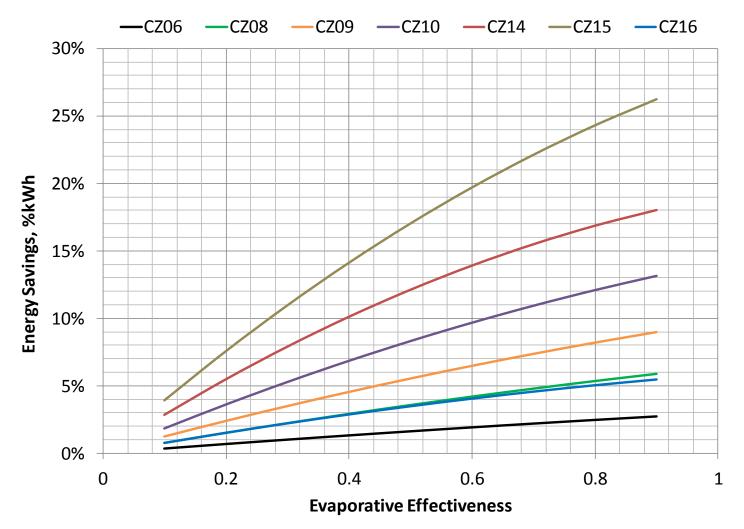








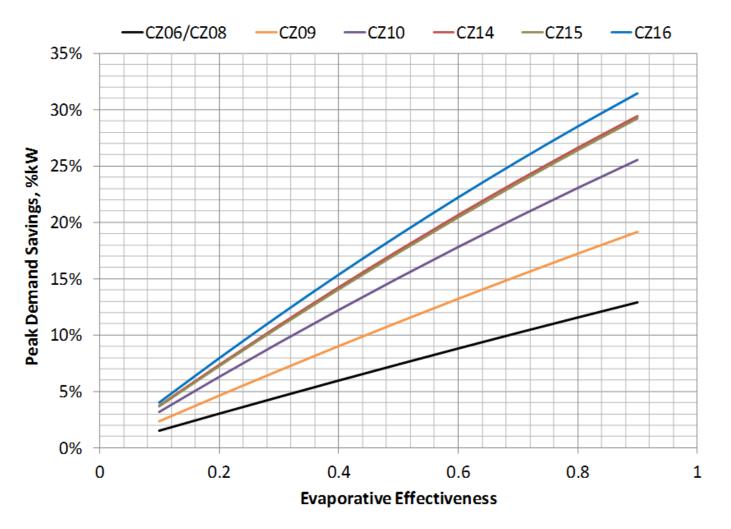




### **Impact of Dry Media**

- Impact on power, capacity, and efficiency when media is present, air conditioning is running, but pre-cooler is not running at mild outdoor air temperatures.
- Benefits of pre-cooling must exceed media penalty to achieve net benefit

|     | % Power Impact | % Capacity Impact | % COP Impact |
|-----|----------------|-------------------|--------------|
| PC1 | 1.70%          | -9.21%            | -10.50%      |
| PC2 | N/A            | N/A               | N/A          |
| PC3 | 0.55%          | -0.77%            | -1.06%       |
| PC4 | 0.73%          | -0.45%            | -0.93%       |
| PC5 | N/A            | N/A               | N/A          |








Source: http://www.etcc-ca.com/sites/default/files/reports/HT11SCE021\_Condenser\_Evap\_Air\_Final.pdf







Source: http://www.etcc-ca.com/sites/default/files/reports/HT11SCE021\_Condenser\_Evap\_Air\_Final.pdf





#### **Evaporative Pre-cooler Test Report**

#### LABORATORY TEST: EVAPORATIVE COOLER PRE-COOLER TEST REPORT

| Evaporative Pre-Cooler:<br>Manufacturer:<br>Description of Pre-cooler: | Water delivery: Spray nozzles fed by booster pump @220psig<br>Nozzle Operation: Continuous operation, on/off control<br>Media: 1" thick foamed polyester | RTU Brand:<br>RTU Model for Test:<br>RTU Serial Number:<br>Nominal Tonnage: | York<br>D6NZ048N06525NX<br>W1H3034594<br>4 tons |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|
| Manufacturer Notes:                                                    | Recirculation pump used for test can serve pre-cooling equipment f                                                                                       | or 20-ton cooling unit.                                                     |                                                 |
| Test Operator:                                                         | Robbie McMurry                                                                                                                                           | Face Velocity (ft/s):                                                       |                                                 |
| Laboratory:                                                            | Western Cooling Efficiency Center                                                                                                                        | Condenser Air (Baseline                                                     | ): 4.4                                          |
| Address:                                                               | 215 Sage Street Ste 100, Davis, CA                                                                                                                       | Condenser Air (w\Pre-C                                                      | cooler): 4.2                                    |
| Phone:                                                                 | 530-752-3262                                                                                                                                             | Pre-Cooler Media Surfac                                                     | ce: 2.4                                         |

|               | Test Conditions    |                                                       |                   |          | Measured |             |           | Predicted RTU Performance |           |           |              |              |
|---------------|--------------------|-------------------------------------------------------|-------------------|----------|----------|-------------|-----------|---------------------------|-----------|-----------|--------------|--------------|
|               | Outdoor Conditions |                                                       | Indoor Conditions |          |          |             |           | Power                     | Capacity  |           | Water-use    |              |
|               | Dry Bulb           | Wet Bulb                                              | DB - WB           | Dry Bulb | Wet Bulb | Evaporative | Water-Use | Pre-Cooler                | (kW)      | (ton)     | EIR (kw/ton) | (Gal/nominal |
| Test Date     | (°F)               | (°F)                                                  | (°F)              | (°F)     | (°F)     | Eff. (%)    | Eff. (%)  | Power (kW)                | Change(%) | Change(%) | Change(%)    | ton)         |
| 6/27/14 12:26 | 85.0               | 67.1                                                  | 17.9              | 80.0     | 67.0     | 67%         | 86%       | 0.302                     | -11%      | 4%        | -14%         | 1.5          |
| 6/24/14 21:29 | 95.0               | 70.1                                                  | 24.9              | 80.0     | 67.0     | 70%         | 93%       | 0.271                     | -16%      | 8%        | -22%         | 2.0          |
| 6/26/14 14:05 | 105.0              | 73.0                                                  | 32.0              | 80.0     | 67.0     | 71%         | 80%       | 0.290                     | -22%      | 12%       | -31%         | 2.9          |
| 6/23/14 18:17 | 115.0              | 75.7                                                  | 39.3              | 80.0     | 67.0     | 68%         | 98%       | 0.284                     | -26%      | 17%       | -37%         | 2.8          |
| 6/20/14 16:33 | 75.0               | 75.0 Dry Pre-cooler Test, Effect of Media Restriction |                   |          |          |             | 0.6%      | -0.7%                     | 1.2%      | NA        |              |              |





Evaporative Pre-cooler Photo Overview

Evaporative Pre-cooler Photo Close-Up

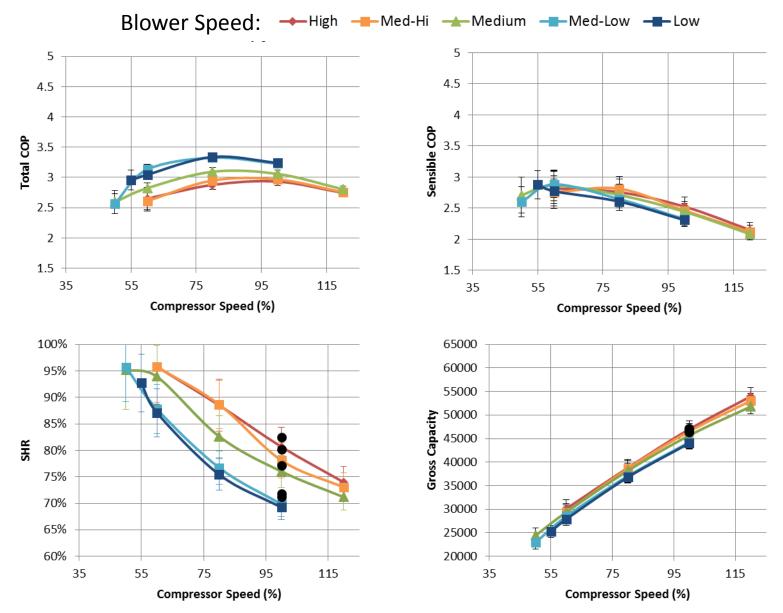
WESTERN COOLING EFFICIENCY CENTER

215 SAGE STREET | SUITE 100 | DAVIS, CA | 95616 | WCEC.UCDAVIS.EDU

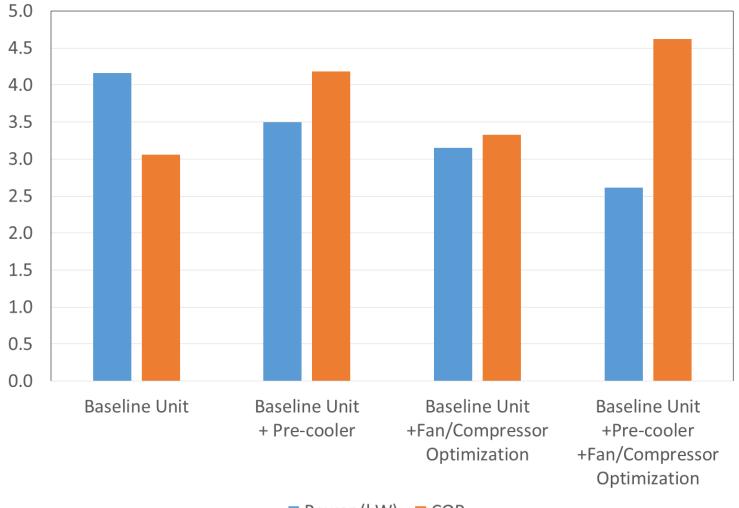




### **Compressor and Fan Speed Testing**


- VFD installed on scroll compressor in 'baseline' 13
  SEER packaged unit.
- Evaporator fan speed varied using taps on ECM motor
- Test Conditions:
  - OA = 75°F, 85°F, and 95°F
  - RA = 80°F DB, 67°F WB








#### Plots of Lab Test Results (at 95°F OA)

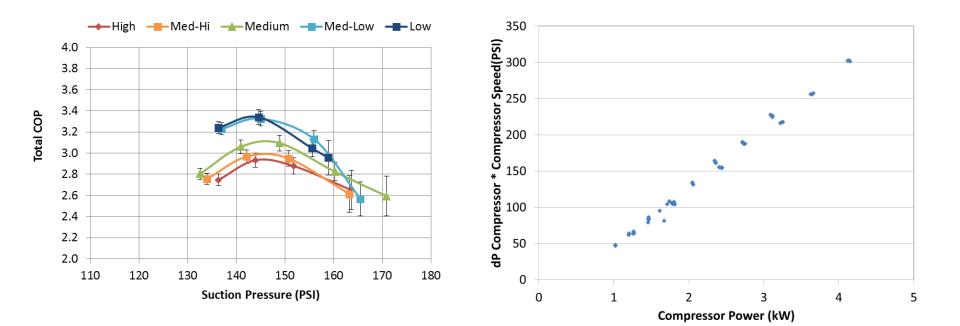


#### Lab Data – Potential of RTU Optimization



Power (kW) COP

## Lab Data – Detailed Results


|                       | Baseline Unit (95°F)<br>Compressor = 100%<br>Fan = Medium | + Pre-cooler (75°F)<br>Compressor = 100%<br>Fan = Medium | +Optimized Fan and<br>Compressor (95°F)<br>Compressor = 80%<br>Fan = Med Low | + Pre-cooler (75°F)<br>+ Optimized Fan and<br>Compressor<br>Compressor = 80%<br>Fan = Med Low |
|-----------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Capacity (kbtu/h)     | 43.5                                                      | 50.0                                                     | 35.7                                                                         | <b>41.1</b> (-6%) <sup>1</sup>                                                                |
| Sensible Heat Ratio   | 0.76                                                      | 0.71                                                     | 0.77                                                                         | 0.73 (-4%) <sup>2</sup>                                                                       |
| Sensible Cap (kbtu/h) | 33.0                                                      | 35.5                                                     | 27.5                                                                         | 30.0 (-9%)                                                                                    |
| Power (kW)            | 4.16                                                      | 3.50                                                     | 3.15                                                                         | 2.61 (-37%)                                                                                   |
| СОР                   | 3.06                                                      | 4.18                                                     | 3.33                                                                         | 4.62 (+51%)                                                                                   |

<sup>1</sup> Percentages are relative to baseline case in column 2.

<sup>2</sup> Sensible heat ratio can be increased to 1 by further dropping compressor speed, but at further reduction of total and sensible capacity

<sup>3</sup> Experiments were conducted at external static pressure specified by AHRI standard. Greater savings are expected from fan speed reductions in buildings with typical duct work.

#### Possible Control Methods



# Questions?



